
hello@cpcs.team

About CPCS
From artificial neural networks to custom electronics design, highload and big data projects. 
CPCS is a team of 100+ senior-level dedicated engineers open to go through an in-depth 
feature-by-feature product discovery process with you. We believe you would also benefit from 
our client-first approach, transparency of all our magic, as well as fair and flexible rates.

CPCS solved the Client’s 
system crashing problem by 
redesigning the connection 
logic of microservices’ child 
processes to Redis.

Quick Fact

System flaws detection, fixing 
a highload project’s code 
written by a third party

Application

Telecommunications, 


any industry

Industry

Being capable both to develop and to debug highload projects, CPCS team will be 
happy to learn more about your particular business needs!

What we saw after performing a series of 
dynamic QA techniques, was that fork 
processes had definite flaws. Every time 
different end users were sending their 
requests simultaneously, the system crashed. 



This output validation error wasn’t that 
easy to debug. The most common solution – to 
update Redis version from v.3 to v.5 – 
helped only during the first week and the 
crash happened again.


All forked child processes used a single 
Redis connection object, which means they 
were executed via one singular connection. 
It is usually quite normal for similar 
processes, but for our particular case the 
idea to change that proved to be the game 
changer. We discovered that when two 
different fork processes were trying to 
request the data simultaneously, the Redis 
connection didn’t understand what output 
should be sent to what receiver.


We fixed the whole system by our engineer’s 
solution to build different Redis 
connections for different child processes.

CPCS’s engineers started the process of 
debugging the code developed by a third 
party. At the initial stage of the process, 
we applied some basic code-inspection 
methods to learn the process logic and 
detect possible flaws.


According to the process logic, the system’s 
end users add their SMPP servers’ parameters 
and choose the other necessary ones (e.g. 
vendors, SMSC, country and networks, sender 
ID and message content, number of 
executions, etc.) to start using the testing 
service and as a result receive the data 
requested. This is enabled by a system 
module written in PHP and using Redis to 
store its data.

Solution

From the business perspective, the Client’s 
system equips end users to test sms delivery 
services. The Client’s end users – mostly 
SMS aggregators and mobile operators – can 
schedule sms delivery tests and receive 
relevant statistics via their emails. There 
are two options of using the testing 
service. End users can either connect it to 
their systems via APIs or there’s an option 
to log into the Client’s platform and manage 
running tests from there.


The Client approached CPCS to debug the 
system, which used to crash once in a while.

Challenge

Detect flaws and fix the Client’s system 
which provides sms delivery testing service.

Objective

SMS Delivery Testing Service
Case Study


